近年来,机器视觉行业在全球范围内实现了创纪录的增长,零部件在3D制导与计量、光谱图像分析、高速检测、深度学习等前沿应用领域的可用性和能力不断增强。
集成与易用性
首先要减轻*终用户的应用程序风险。总的来说,机器视觉技术的实现技术还没有像PLC、运动控制甚至机器人技术那样被整个工业工程界广泛理解。聘请具有机器视觉技术经验的集成商,从根本上有助于确保项目的*终成功和可靠性。
不过,对不需要集成的机器视觉系统的需求肯定很高。机器视觉应用的易用性一直是用户的痛点,也是市场上组件和软件制造商的目标。在20世纪80年代中期,许多机器视觉组件开始出现,它们不需要低级编程,并且具有用户界面,这使得工具的配置更加容易。20世纪90年代智能相机技术的爆炸式发展巩固了机器视觉的易用性。其结果是许多要求较低的机器视觉应用程序可以使用只需要很少配置甚至不需要配置的组件来解决。但是,机器视觉集成服务需求的持续增长,很大程度上是由于工业内部对需要使用**机器视觉技术的*具挑战性的应用程序的实现的持续和不断扩大的需求。
不断变革
在过去的10到15年中,机器视觉系统集成已经成为一种非常复杂的工程服务。成功的集成公司虽然可能继续为更常见的任务配置更简单的组件而提供服务,但它们经常处理以前尚未实现的高度复杂的自动化应用程序。现在的系统集成对于综合性技术的要求也越来越高,一个合格机器视觉集成商的先决条件包括:
1、能够对各种基于PC、嵌入式计算机或板级软件库进行编程,以执行*复杂的机器视觉图像采集、处理和分析算法和任务;
2、了解各种成像技术、相机和传感器;
3、在复杂和专门的光学和照明元件的选择、设计和实现方面具有广泛的能力,以及在先进机器视觉成像系统的规范和使用方面具有广泛的专业知识。
此外,机器视觉集成商已经调整了商业模式,成为完整自动化系统的提供商,提供涉及机器视觉技术的解决方案的设计和集成,而不是仅安装机器视觉组件。要求苛刻的应用程序成功的关键包括控制零件,提供灵活的处理选项,操纵摄像机和照明方向,协调自动化控制和连接外部设备的能力。对通信的额外需求 – 例如与工业物联网(IIoT)和工业4.0相关的通信 – 决定了与机器视觉解决方案相关的进一步集成技能。
新技术
机器视觉技术的快速发展使得大量新应用成为可能,同时也有助于推动当今机器视觉集成商的需求和技术能力。
首先,考虑3D成像:更容易获得捕获视野的3D信息的机器视觉组件。这些设备在成像方法和实现技术方面差异很大。集成商可以将这些设备应用于各种应用,包括高精度表面分析、3D零件和特征测量,以及使用3D图像数据进行检查,而不是2D灰度信息。还有*新推出的机器人视觉引导,在机器人导引中,随机的产品甚至是混合的、随机堆积的产品都可以被夹持器挑出并抓取。
其次,高光谱和多光谱成像是一项相对较新的技术。这些摄像机收集单个场景的多个(有时是数百个)图像,每个图像具有不同的窄带宽光谱信息。在熟悉该技术的集成商手中,可以在线完成材料离散光谱分析甚至化学成分的应用。食品,制药和回收等许多行业都可以从这种检测能力中受益。
第三,许多工业应用需要高速成像和处理。线扫描是一种在高分辨率下实现更高成像速率的常用技术,但这些组件的集成可能比普通区域成像应用更复杂。同样,高速成像和处理是需要熟练集成的任务。
*后,深度学习变得越来越受欢迎。虽然机器视觉并不是全新的,但机器学习及其*新的实现深度学习是该行业的*新流行语。这项技术在许多应用领域显示了巨大的潜力,但是它需要一个熟练的集成人员来确定特定任务的深度学习的可行性和实现参数。
- 下一篇:氩弧焊的“优”与“劣”
- 上一篇:我国机器人产业连续6年产量居全球首位——那智机器人